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Metastability for delayed differential equations
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In systems at phase transitions, two phases of the same substance may coexist for a long time before one of
them dominates. We show that a similar phenomenon occurs in systems with delayed feedback, where short-
term stable oscillatory patterns can also have very long lifetimes before vanishing into constant or periodic
steady states.@S1063-651X~99!16211-1#
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I. INTRODUCTION

Metastability is often associated with phase transitio
For example, at the transition temperature, two phases o
same substance~for instance, liquid and solid at the wettin
temperature! can coexist for an extremely long time befo
one of them eventually dominates. The slow evolution fro
spatial inhomogeneity to the homogeneous state results
the surface tension that tends to reduce the area of the i
face between the two phases~e.g.,@1,2#!.

A simple equation that has been used as a model for
slow interface dynamics is

] tu5e2]x
2u2

dF

du
~u!, ~1!

whereu represents the state variable of a substance at a p
xP@0,1#, and timet, F is a free energy function, ande!1
measures the relative importance of the surface tension.
assumed thatF has two minima~see Fig. 1!, at a and b,
representing the two coexisting phases at the transition t
perature whereF(a)5F(b). Notice thatu5a andu5b are
stationary solutions of Eq.~1!. At the transition temperature
Eq. ~1! has solutions in which the coexistence of the tw
phases persist for an extremely long time~of the order of
e21/e) before giving way to a homogeneous state where o
one of the phases exists@2,3#. Solutions having these prop
erties will be called metastable solutions. For simplicity,
us assume thatab,0. In terms of Eq.~1!, a typical meta-
stable solution is one that has a square wave shape
plateaus ata and b representing regions where the corr
sponding phase of the substance dominates, and the
changes indicating the interfaces between the two pha
The slow evolution towards the homogeneous state trans
into a slow decrease in the number of sign changes: as
phase is progressively absorbed by the other, consecu
sign changes merge together and vanish.

The goal of this paper is to show the existence of a sim
metastability~slow evolution towards one of the equilibria!
in systems with delayed feedback. To this end, we cons
the prototype of such systems represented by the follow
delayed differential equations~DDEs!:

e ẋ~ t !52x~ t !1 f „x~ t21!…, ~2!
PRE 601063-651X/99/60~5!/6230~4!/$15.00
.
he

m
er-

e

int

is

-

ly

t

ith

ign
es.
tes
ne
ive

r

er
g

wheref is essentially either an increasing function~positive
feedback! or a decreasing function~negative feedback! and
satisfiesf (0)50, andu f 8(0)u.1.

Equation~2! appears as a model for many biological a
physical systems such as nonlinear optical devices@4#. In the

FIG. 1. Typical functionF(u) with two minima separated by a
maximum:~i! at temperature lower than the transition temperatu
~ii ! at the transition temperature;~iii ! at temperature higher than th
transition temperature.
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context of optical bistable devices the existence of very lo
transient ‘‘states’’ were already experimentally observed
the early 1980s@5#, Appendix A, and@6#!.

In analogy with Eq.~1!, an oscillating solution of Eq.~2!
is metastable if it changes slowly along time; that is, if t
position and the number of its sign changes evolve slow
Therefore, in order to show that Eq.~2! exhibits metastable
solutions, and to determine the conditions for their existen
we need to study the evolution of the sign changes al
oscillating solutions.

There is an important difference between the metasta
patterns of the model for phase transitions described ab
and those we present in this paper. While the phase trans
patterns are quasistatic with respect to evolution in time, o
are oscillatory and quasiperiodic. This means that there
initial conditions that after a fast transient lead to a perio
pattern that is short-time stable to perturbations and last f
very long time. The system seems to have achieved a st
periodic regime that, nevertheless, changes very slowly
time. Thus, in the case of positive feedback, for instance,
metastable pattern satisfiesx(t)5x(t111r e) up to expo-
nentially small corrections ine, wherer is some constant to
be determined in the following way. Substituting this a
proximation in Eq.~2!, rescaling time ast85te, defining
y(t8)5x(t), and taking the limit ase→0, we obtain the
following advanced equation:

ẏ~ t !52y~ t !1 f „y~ t1r !…. ~3!

There are two values ofr, r 5r 2 , r 5r 1 , for which Eq.
~3! has solutionsy2 and y1 such thaty1(2`)5a, y1

(1`)5b, andy2(2`)5b, y2(1`)5a. Sincey1 andy2

make the transition between the equilibriaa andb, Eq. ~3! is
called a transition layer equation. It is possible to show t
the real solution of Eq.~2! can be approximated by se
quences of functionsy1 and y2 conveniently rescaled an
glued together. The metastability arises whenf implies that
r 25r 1[r . In the negative feedback case a similar analy
leads to a system of two advanced equations instead o
single Eq.~3!, and it follows that there always exists met
stability, in contrast to the case of positive feedback. T
detailed discussion of both positive and negative feedb
cases for smooth functionf will be presented in a longe
paper. Here we shall just consider two cases of piecew
constantf ’s @7#: f (0)50, f (x)5a for x,0, andf (x)5b for
x.0. The positive feedbackcase corresponds toa,0,b,
and thenegative feedbackcase corresponds toa.0.b.

A. Positive feedback

For this piecewise constant functionf, positive and nega-
tive solutions tend monotonously tob and a, respectively.
We are interested in the oscillating solutions; that is, th
that display sign changes. The temporal evolution of th
can be described through the propagation of the s
changes, that is, the consecutive zeros of the solutions ca
computed iteratively.

Let us illustrate this for the solutionx of Eq. ~2! going
through an initial conditionf satisfying f(s).0 for s,
2u, f(s),0 for s.2u, andf(0)50, for someu in (0,1).
A simple computation shows thatx has two zeroes in the
g
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interval (0,22u): the first one att1512u1d with ẋ(t)
,0, and the second one att2511 d̄ with ẋ(t).0, where
~see Fig. 2!,

d5e lnFb2a2be2(12u)/e

2a G ,
d̄5e lnFb2a2~b2a!e2u/e2be21/e

b G .
Then, the consecutive zeros ofx are obtained by the itera
tions of the mappingp:(0,1)→R given by

u85p~u!5t22t15u1 d̄2d. ~4!

For e small p(u) can be written as

p~u!5u1eF ln
uau
b

2e2u/e1
b

b2a
e2(12u)/eG1R~u,e!,

~5!

where if um5min$u,12u% then R(u,e)exp(um/e)→0 as e
→0.

Using Eqs.~4! and ~5!, we can show that Eq.~2! has an
unstable periodic orbit in whichu85u'1/21e ln@(b
2a)/b#1/25 ū. If the initial u is larger thanū then its iterates
slowly increase until they reachu51. If the initial u is
smaller thanū then its iterates slowly decrease until the
reachu50. The speed with which the zeros evolve towa
either 0 or 1 depends on the relative positions ofuau andb.
When eitheruau.b or converselyb.uau, u82u is of the
order of e. However, whenuau5b, Eq. ~5! implies thatu8
2u is of the order (e)exp(2um/e). In this case, provided tha
um is larger thane, the solutionx of the initial conditionf
with sign change atu is a metastable square wave. Th
square wave subsists until the slow motion ofu towards 0 or
1 eventually accelerates whenu'e, in which case the solu-
tion x is mostly equal tob, or u'12e, in which case the
solution is mostly equal toa ~this fact also has an analo
with the phase transition metastability where ‘‘drops’’ of
nondominant phase are metastable provided they are s
ciently large!.

FIG. 2. Evolution of zeros for the positive feedback case.
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The same analysis can be carried out in the case wher
initial condition changes sign several times. It shows that
zeroes drift very slowly in a way similar to that describ
above.

Finally, notice that the conditionb/uau51 is crucial for
the existence of metastable patterns, otherwiseu82u is of
the order ofe. For the piecewise constant functionf, a simple
computation shows thatr 2 and r 1 of Eq. ~3! are given by

r 15 lnS 12
a

bD and r 25 lnS 12
b

aD .

Therefore the metastability conditionr 15r 2 will be satis-
fied if and only if uau/b51.

B. Negative Feedback

The analysis of this case follows the same lines of
positive feedback case. The simplest type of initial condit
that leads to a metastable pattern must have two
changes. So let us assume thatf(s),0 for sP@21,2u1
2u2)ø(2u1,0), f(s).0 for sP(2u12u2 ,2u1), and
f(0)50 ~see Fig. 3!. As in the positive feedback case, th
solution x related to any initial function of this type can b
easily computed. From this computation we obtain thatx has
only two zeroes in the interval (0,1): att1512u12u21d,
and att2512u11 d̄ ~see Fig. 3!, where

d5e lnFa2b1be2(12u12u2)/e

a G ,

d̄5e lnFa2b2~a2b!e2u2 /e2be2(12u1)/e)

2b G .
Defining u185t22t1 andu285t1 ~see Fig. 3! the consecutive
zeros ofx are completely determined by iterations of t
mappingp:(0,1)3(0,1)→R2 given by

u185p1~u1 ,u2!5u21 d̄2d,

u285p2~u1 ,u2!512u12u21d.

FIG. 3. Evolution of zeros for the negative feedback case
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Denoting (u1 ,u2) by u we can writep as

u85p~u!5Au1v1ea1eb1R,

where

A5S 0 1

21 21D , a5S ln@a/2b#

ln@~a2b!/a#
D ,

v5S 0

1D , b5S S 2b

a2bDe2(12u12u2)/e2e2u2 /e

S b

a2bDe2(12u12u2)/e
D ,

and R(u1 ,u2 ,e)exp(um/e)→0 as e→0 with um5min$u2,1
2u12u2%. Now, neglecting the exponentially small terms
p we define

p̃~u!5Au1v1ea.

It is easy to verify that the third iterate ofp̃ is the identity,
therefore

p+p+p~u!5u1r ~u,e!,

where zur (u,e)exp(um/e)uz,const for alleP@0,1#. This im-
plies the existence of metastable patterns provided
min$u1 ,u2,12u12u2%@e. It is remarkable that in this cas
there is no condition on the coefficientsa,b for the existence
of metastability, in contrast to the positive feedback case

II. CONCLUSION

Delayed differential equations support solutions with
large number of different patterns. There is numerical a
experimental evidence~in the context of optical bistable de
vices! that many of them are stable@4–6,8#. It has been
proposed by Ikeda and Matsumoto@8# ~section 2.3! that
these patterns could be potentially used to construct mem
devices. The results in our paper suggest that the metas
patterns described above could be used to construct s
memory devices. Initially a pattern with a certain number
signs would be given and this would be kept by the dev
for a very long, but finite, time. Depending on the size ofe
this time can be large enough for practical applications.

In this paper we only considered the case of scalar
layed equations. We have shown that there is a big differe
between positive and negative delayed feedback. System
delayed equations commonly appear as models of neural
works. They can have a mixture of positive and negat
feedback loops. A numerical analysis of some simple n
works showed that metastability can also occur for syste
of delayed equations~Ref. @9#!. Thus, it is an interesting
open question, even in the case of piecewise constant
linearities, to determine conditions on systems of mix
positive-negative delayed feedback equations that ensur
preclude the existence of metastability. Depending on
answer to this question the potential for using delayed fe
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back networks to construct short memory devices can
greatly enhanced. The results in this paper also open r
for many types of investigations that have been carried ou
the context of phase transitions for some time, an exam
being the coarsening phenomenon@10#.
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