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Metastability for delayed differential equations
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In systems at phase transitions, two phases of the same substance may coexist for a long time before one of
them dominates. We show that a similar phenomenon occurs in systems with delayed feedback, where short-
term stable oscillatory patterns can also have very long lifetimes before vanishing into constant or periodic
steady state§S1063-651X99)16211-1

PACS numbses): 42.30-d, 87.10+e, 42.65.Pc, 07.05.Mh

I. INTRODUCTION wheref is essentially either an increasing functigositive
feedback or a decreasing functiofnegative feedbagkand
Metastability is often associated with phase transitionssatisfiesf(0)=0, and|f’(0)|>1.
For example, at the transition temperature, two phases of the Equation(2) appears as a model for many biological and
same substanador instance, liquid and solid at the wetting physical systems such as nonlinear optical deidédn the
temperaturgcan coexist for an extremely long time before
one of them eventually dominates. The slow evolution from i F(u)
spatial inhomogeneity to the homogeneous state results from D
the surface tension that tends to reduce the area of the inter-
face between the two phasesg.,[1,2]).
A simple equation that has been used as a model for the
slow interface dynamics is

- e
o

dF
du=e292u— oW (1)

whereu represents the state variable of a substance at a point

xe[0,1], and timet, F is a free energy function, ane<1 .

measures the relative importance of the surface tension. It is ii)

assumed thaF has two minima(see Fig. ], at a and b,

representing the two coexisting phases at the transition tem-

perature wheré(a) =F(b). Notice thatu=a andu=b are

stationary solutions of Eq1). At the transition temperature

Eqg. (1) has solutions in which the coexistence of the two

phzla/ses persist for an extremely long tirfeé the order of a b

e~ ~'©) before giving way to a homogeneous state where only u

one of the phases exisfg,3]. Solutions having these prop- \‘/ \'/

erties will be called metastable solutions. For simplicity, let

us assume thaib<0. In terms of Eq.(1), a typical meta-

stable solution is one that has a square wave shape with F(u)

plateaus ata and b representing regions where the corre- iif)

sponding phase of the substance dominates, and the sign

changes indicating the interfaces between the two phases.

The slow evolution towards the homogeneous state translates

into a slow decrease in the number of sign changes: as one

phase is progressively absorbed by the other, consecutive a b

sign changes merge together and vanish. N -
The goal of this paper is to show the existence of a similar ;

metastability(slow evolution towards one of the equilibyia

in systems with delayed feedback. To this end, we consider

the prototype of such systems represented by the following Fig. 1. Typical functionF (u) with two minima separated by a

F(w)

delayed differential equation®DEs): maximum: (i) at temperature lower than the transition temperature;
) (i) at the transition temperatur@ii) at temperature higher than the
ex(t)=—x(t) +f(x(t—1)), (2) transition temperature.
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context of optical bistable devices the existence of very long
transient “states” were already experimentally observed in
the early 1980$5], Appendix A, and 6]).

In analogy with Eq(1), an oscillating solution of Eq2)
is metastable if it changes slowly along time; that is, if the
position and the number of its sign changes evolve slowly.
Therefore, in order to show that E@) exhibits metastable
solutions, and to determine the conditions for their existence,
we need to study the evolution of the sign changes along | \/
oscillating solutions.

There is an important difference between the metastable
patterns of the model for phase transitions described above
and those we present in this paper. While the phase transition
patterns are quasistatic with respect to evolution in time, ours
are oscillatory and quasiperiodic. This means that there are
initial conditions that after a fast transient lead to a periodic
pattern that is short-time stable to perturbations and last for a ] L
very long time. The system seems to have achieved a steadjferval (0,2-6): the first one att;=1—6+ 6 with x(t)
periodic regime that, nevertheless, changes very slowly ir<0, and the second one =1+ & with x(t)>0, where
time. Thus, in the case of positive feedback, for instance, thésee Fig. 2,
metastable pattern satisfig$t)=x(t+1+re) up to expo-
nentially small corrections i, wherer is some constant to
be determined in the following way. Substituting this ap-
proximation in Eg.(2), rescaling time ag’=te, defining

(=
2
;

FIG. 2. Evolution of zeros for the positive feedback case.

§=6|n

b—a—be (1-0e
_a !

y(t")=x(t), and taking the limit ass—0, we obtain the _ b—a—(b—a)e #<—pe Ve
following advanced equation: o=¢€ln b .
y(O)==y(O)+fy(t+r)). () Then, the consecutive zeros pfare obtained by the itera-

tions of the mapping:(0,1)— R given by

There are two values afr=r_, r=r_, for which Eq.

(3) has solutionsy_ andy, such thaty,(—«)=a, y,

(+o)=h, andy_(—=)=h, y_(+»)=a. Sincey, andy_

make the transition between the equilibaiandb, Eq. (3) is ]

called a transition layer equation. It is possible to show thafor € smallp(§) can be written as
the real solution of Eq(2) can be approximated by se-

0'=p(0)=t,—t;= 6+ 6— 4. (4)

guences of functiony, andy_ conveniently rescaled and _ El e b (-
glued together. The metastability arises wtiémplies that P(O)=0+¢/In-—e T+ —e +R(0,€),
r_=r,=r. In the negative feedback case a similar analysis (5)

leads to a system of two advanced equations instead of the

single Eq.(3), and it follows that there always exists meta- \yhere if fn=min{0,1— 6} then R(8,e)exp(@/€)—0 as e
stability, in contrast to the case of positive feedback. The g

detailed discussion of both positive and negative feedback Using Egs.(4) and (5), we can show that Eq2) has an
cases for smooth functiohwill be presented in a longer |nstable periodic orbit in which 6’ = ~1/2+ e In[(b
paper. Here we shall just consider two cases of piecewise 2 o o . — o
consants 7 1(0)=0, 109 =a orx=0, andi()=bor T LS e 1 rger ey en o s
x>0. The positive feedbackase corresponds @®<0<b, y y '

and thenegative feedbackase corresponds &> 0> b. smaller thand then its iterates slowly decrease until they
reach6=0. The speed with which the zeros evolve toward

either 0 or 1 depends on the relative positionsajfandb.
When either|a|>b or converselyb>|al|, 6'— 6 is of the

For this piecewise constant functiénpositive and nega- order of e. However, whena|=b, Eq. (5) implies that6’
tive solutions tend monotonously to and a, respectively. — @ is of the order €)exp(— 6,,/€). In this case, provided that
We are interested in the oscillating solutions; that is, those,, is larger thane, the solutionx of the initial condition¢
that display sign changes. The temporal evolution of thesaith sign change a® is a metastable square wave. This
can be described through the propagation of the sigmsquare wave subsists until the slow motiordabwards O or
changes, that is, the consecutive zeros of the solutions can leeventually accelerates wheé= €, in which case the solu-
computed iteratively. tion x is mostly equal tdb, or #~1— ¢, in which case the

Let us illustrate this for the solutior of Eq. (2) going  solution is mostly equal t@ (this fact also has an analog
through an initial condition¢ satisfying ¢(s)>0 for s< with the phase transition metastability where “drops” of a
— 6, ¢(s)<0 fors>— 0, and¢(0)=0, for somed in (0,1).  nondominant phase are metastable provided they are suffi-
A simple computation shows that has two zeroes in the ciently large.

A. Positive feedback
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AX Denoting @,,6,) by 6 we can writep as
o608, 6 6 o i 8
i 0'=p(0)=A0+Vv+ea+eB+R,
| e
! | where
| 0 L H t,
o P ot 0o 1 In[a/—b]
T\ : A= o '
e ! ' -1 -1 In[(a—b)/a]
! ! i —b
e - - —(1-61—0y)l € —05l€
- oy 5 0 5 e (1-01-0)le_ a0,
FIG. 3. Evolution of zeros for the negative feedback case. N ( l)' N [ ’
_a_b e ( 1 2) €

The same analysis can be carried out in the case where thg\d R( 6, , 6,, €) exp(6,,/e)—0 as e—0 with 6,,=min{6,,1
initial condition changes sign several times. It shows that the- g, — 9,1, Now, neglecting the exponentially small terms in
zeroes drift very slowly in a way similar to that described e define

above.
Finally, notice that the conditiob/|a|=1 is crucial for
the existence of metastable patterns, othervdise 6 is of PO =A0+V+ ea.

the order ofe. For the piecewise constant functifra simple

computation shows that. andr, of Eq. (3) are given by ] ) o - . i
It is easy to verify that the third iterate @f is the identity,

therefore

a b
r+=ln<1—— andr_=ln(1—5). popep(8)=6+r(0,€),

b
where||r (6, €)exp(@n/€)||<const for allee[0,1]. This im-
Therefore the metastability conditian.=r_ will be satis- plies the existence of metastable patterns provided that
fied if and only if|al/b=1. min{6,,0,,1— 0,— 6,}> €. It is remarkable that in this case
there is no condition on the coefficierash for the existence

B. Negative Feedback of metastability, in contrast to the positive feedback case.

The analysis of this case follows the same lines of the
positive feedback case. The simplest type of initial condition
that leads to a metastable pattern must have two sign Delayed differential equations support solutions with a
changes. So let us assume this)<O for se[—1,—6;  large number of different patterns. There is numerical and
—0,)U(—61,0), ¢(s)>0 for se(—6,—6,,—6;), and experimental evidencgn the context of optical bistable de-
¢(0)=0 (see Fig. 3. As in the positive feedback case, the viceg that many of them are stablel—6,8. It has been
solutionx related to any initial function of this type can be proposed by lkeda and Matsumof8] (section 2.3 that
easily computed. From this computation we obtain thiahs  these patterns could be potentially used to construct memory
only two zeroes in the interval (0,1): 8=1—6,—6,+6,  devices. The results in our paper suggest that the metastable
and att2=l—01+§(see Fig. 3, where patterns described above could be used to construct short

memory devices. Initially a pattern with a certain number of
signs would be given and this would be kept by the device
a—b+be (171 0le for a very long, but finite, time. Depending on the sizeeof
a ' this time can be large enough for practical applications.

In this paper we only considered the case of scalar de-
layed equations. We have shown that there is a big difference
between positive and negative delayed feedback. Systems of
delayed equations commonly appear as models of neural net-
works. They can have a mixture of positive and negative
feedback loops. A numerical analysis of some simple net-
works showed that metastability can also occur for systems
of delayed equationgRef. [9]). Thus, it is an interesting
open question, even in the case of piecewise constant non-
linearities, to determine conditions on systems of mixed
positive-negative delayed feedback equations that ensure or
preclude the existence of metastability. Depending on the
03=Po(01,0,)=1—0,—0,+ 6. answer to this question the potential for using delayed feed-

II. CONCLUSION

(_‘5=e|n

a—b—(a—b)e %2/c—pe (1-0D/e)
-b

S=eln

Defining ;=t,—t, and #;=t, (see Fig. 3 the consecutive
zeros ofx are completely determined by iterations of the
mappingp:(0,1)X (0,1)— R? given by

01=p1(01,0,)= 92"’3_@
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